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Photon-Electron Scattering Taking 
Vacuum Energy into Account 
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We deal with photon-elect ron scattering between the two uncharged conducting 
parallel plates. The electromagnetic vacuum field between the two plates is 
defined by the configuration of space and also interacts with the electrons. We 
first deal with the relevant operators for the electron and photon fields and with 
the Feynman propagator.  We compute  the S-matrix for photon-electron scatter- 
ing, taking into account  the influence of the vacuum field. The computed 
photon-e lec t ron scattering cross section also manifests  the influence of  the 
vacuum field. We give an example for low-energy scattering of the influence of 
the vacuum field upon  the scattering cross section. 

1. I N T R O D U C T I O N  

Vacuum energy in quantum electrodynamics can be avoided by select- 
ing any initial energy level higher than the vacuum energy whereupon we 
compute with the relative energy differences. The absolute energy level 
makes sense in the general theory of relativity, where energy creates cur- 
vature of  space. Vacuum energy within the general theory of  relativity 
constitutes the source of the basic curvature of  space. The presence of  
vacuum energy can also be established with many other phenomena  in 
physics. Experimental  confirmation of the zero-point energy ideas may be 
found in the general consistency of quantum mechanics in describing actual 
microscopic phenomena,  and also in certain experimental results which 
depend specifically on the quantum zero-point vibrations. Perhaps one 
of  the most striking phenomena  is the failure of  liquid 4He to solidify at 
normal pressures as the temperature is reduced toward the absolute zero 
(Finkelnburg, 1964). Bose condensation predicts that all helium atoms can 
fall into the same lowest energy state. However,  the zero-point vibrations 
of  this light atom are sufficient to overcome the attraction of  the very small 
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van der Waals forces, so that no crystal lattice is formed until considerable 
pressure is applied. Zero-point energy effects are also found in the vapor 
pressure of the neon isotopes (Casimir, 1951). Nuclear interactions and 
rotational moments in molecules require the inclusion of zero-point vibra- 
tions in their explanation (Ramsey, 1963). The finite random scattering of 
x-rays from crystals at very low temperatures shows the presence of zero- 
point oscillations of the molecules of the crystal (Peierls, 1955). Measure- 
ments of molecular specific heats and paramagnetism are in agreement with 
the presence of  zero-point vibrations (Einstein and Stern, 1913). 

Casimir established that the vacuum fluctuation of the electromagnetic 
field generates the attractive force of the two noncharged conducting parallel 
plates (Casimir, 1948; Fierz, 1960). When computing the vacuum energy, 
each term Y~�89 = Ei (w depends on the configuration of the space) is 
formally divergent. Casimir solved the problem of divergence by a corre- 
sponding cutoff function e -A~/c. If the vacuum energy of the system for 
infinite separation is set equal to zero, then the energy per unit area of the 
plates for any finite separation Lz is -~r(720L3z) -1. The first verification of 
the Casimir effect was performed experimentally by Spaarnay (1958), who 
used one chromium plate and one chromium/steel plate with a surface of 
1 c m  2 each. With a distance of 0.5/zm the attractive force between the plates 
was 0.2 dyne /cm 2. A very good result for the computation of vacuum energy 
for the conducting sphere was achieved by Boyer (1968). 

This paper deals with the scattering of light by electrons located between 
two noncharged conducting parallel plates. Between the two plates there 
is an electromagnetic vacuum field which also interacts with the electrons. 
From the computed S-matrix and the scattering cross section it is evident 
that the vacuum field interacts with the Dirac field, as the contributions 
due to the interaction of the Dirac field with the electromagnetic vacuum 
field in the S-matrix and the cross section differ from zero. 

2. DESCRIPTION OF THE PROBLEM 

This paper deals with the scattering of photons by the electrons located 
between the two noncharged conducting parallel plates (Figure 1). As the 
field is spread all over the space, it is generally supposed that the field is 
enclosed in a large cube whose edges Lx, Ly, and Lz are parallel with the 
space coordinates. We also presume that each field variable simultaneously 
constitutes a periodic function of the space. Within the limit the lengths 
L~,, Ly, and L~ approach infinity. In our case the hypothesis is that only Lx 
and Ly approach infinity, whereas Lz constitutes an extremely minute span 
between the two plates (Lz </zm) .  It is this assumed Minkowski space that 
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Fig. 1. Location of electron and photon fields. 
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was used in quantization. The relevant propagator  vector for the photon is 

~27r 
- -  n x  
Lx 

/~=, _22. 
Ly r 

2~" 
- -  n z  tz . 

?ix, ny, and nz have positive integer values. We use units such that h = c = 1. 
The four-dimensional coordinates of  the point are X,,  where Xi constitute 
the space coordinates (Xx, Xy, Xz) and Xo = t. 

Because of the ultimate span Lz between the two plates, the summation 
in computing the propagator  for the photon and electron and the calculation 
of the S-matrix must, unlike the hitherto performed computations,  always 
and without exception be transacted in the direction of  the component  Xz. 

Figure 2 shows the diagram relevant to the reaction. 
The eigenvalues of  the electron and photon field operators on the plates 

must equal zero. The relevant operator of  the electron field is 

a(r)u(r) e+ipTXT q'(x) = V-1/2 ~ r_E1,2 sin(pzXz) 

+ E a(r)+u(r) sin(p~X~) e-'pTx~ I 
r = l . 2  3 

(1) 
a(r)+tT(~) e-~prxr ~(x):  W-l/2~Fi r=~l,2 sin(pzXz) 

+ E a (r)a(r) sin(p~X~) e" x l 
r =  1.2 A 
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Fig. 2. Reaction diagrams. 

In the field operators and S-matrix, the components X~, Pz, q~, kz are parallel 
to the Xz coordinate, whereas XT, PT, kr, qr are the other three components 
of  a four-vector. 

In the operator for the electron field, a and a + constitute both the 
annihilation and the creation operators; u stands for the spinor; y~, y~ are 
Dirac matrices. The relations given below must be fulfilled: 

a = u ' y4 ,  � 8 9  (2) 

{q;~ (x,), tP(x2)} =- iS,~t3 (x, - x2) (3) 

{as (pi), + ' ,,, a~(pi)} = O~Op p: (4) 

{a~ (pi), at~(p~)} = {a+(p~), a~(p~)} = 0 (5) 

The propagator for the electron is computed by means of relation (3) in 
the interaction representation. A computation will furnish a propagator in 
our case: 

Sv = i l i m  1 f 4 ~-~o ~ dap-r E eip<~-Y) iYP - m 
p~ p2 + m 2_ ie (6) 

In our example the usual connection was not applied: 

E_~ V 

When computing the propagator for the electron, L~ cannot tend toward 
infinity in the direction of the axis z because the two plates are spaced by 
a finite span L~. For this reason it is imperative to conscientiously carry 
out the summation in the direction of the axis z. This is where this method 
differs from the Feynman propagators normally used. 
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Therefore we have to use the link 

,, ~ 2apx@y e~ 
The relevant operator of  the photon field is 

1 ~1/2 
�9 -+'(~) sin(kzXz) e -'kT• A~,(x) = \2-~oV] • [ae~ ) sin(kzXz) e'kT• + u e~. ki 

= Y~ [ue~(~) sin(g~Xz) e ~ x ~ +  u~+-("~ sin(gzX~) e -ig~x~] gi 

(7) 

(8) 

k o =  Ik, I, go = Ig, I 

In the operators, a and a § constitute the relevant annihilation and creation 
operators; ~(~) and e~ ) constitute the corresponding polarization vectors. e ,  
The relations given below must be satisfied: 

[a~,(ki), a+(kl)] = O~Ok,,k; 

[aj,(k,), a~(kl)] =[aS(k , ) ,  + ' a~(k,)] = 0  

(9) 

3. COMPUTATION OF THE S-MATRIX 

The vertex diagrams for our case are depicted in Figure 2. The relevant 
S-matrix of the lowest order is 

(P2, g[Slpl, k) 

=eg f d3Xr, f:~dXzl f d3Xrz f:~dXz2(p2ldjlO} 

x 3'.SF(x,-x2)%(OlO(x2)[Pl)(:(glA~.(x,)A~(x2)lk):) (10) 

The S-matrix (10) equals the S-matrix for Compton scattering. When 
computing the S-matrix we may encounter serious difficulty in the attempt 
to carry out integration along the "vertexes." The case quoted above features 
the span Lz in the direction of component Xz with the two plates pulled 
apart, which renders integration from minus to plus infinity virtually imposs- 
ible. In the direction of component Xz, integration extends from zero to 
L~, and in the direction of the other three components,  from minus to plus 
infinity. Having inserted operators (1), (7), and (8) in the S-matrix (10) 
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and carrying out the calculation, we obtain 

(p2, glSlPl, k) 

V-  2 ie~ f d3br ~ 02(Pe)y~e~2 ~ 1 i y rb r+ iy~bz -m  
(4kogo) 1/2 J bz (21r)3 2 2 2 2 ( b r + b ~ + m  )b~ 

sin 2 (b L~ 2 ] e~O%u(P')(27r)603(--P2T+ br- -gr )  • 

�9 sin(p2~LJ2) e~P,t/2 sin(pl~LJ2) 
X 0 3 ( - b r  q-P1T q- k r )  e -'pz=L~/2 

P2~ Pl~ 

x e -'g:Lz/2 sin(gzLJ2) eGLz/2 sin(k~Lz/2) ~- (k .-~ g, )t I ..~ )t2) (11) 
gz k~ 

The next problem when computing the S-matrix is the inability to integrate 
according to the momentum in the propagator, which necessitates summa- 
tion strictly along component Xz, 

27r 
b~ = ~ nz 

The value for bz is now inserted in the S-matrix and summed according to 
nz from one to infinity. As regards the other components, integration is 
performed according to the usual procedures. An elaborate computation 
yields the result 

(P2, glSIpl, k) 

1 
= (Ly, L~) -2 (4kogo)a/2/i2(P2)T ~ ^(a2) 

[ i%(p,  + k)-_m iy~ 
x \ (P, + k)2+ me 4Lz[(plr  + kr)2+ m2]'/2[(p~r + kr)2+ rn 2] 

i2yz[ ( p, r + kT ) 2 + rn2] ~/2 -- [ i y r (  P,  T + kT ) -- m ]  

i[(p,r  + kr)2 + m2]~/2[(p,r + kr)2+ m 2] 

7F 
x 2L~ coth{[(par + kr)2+ m2]l/2Lz} 

2[ iyT( Plr  + kr) - m] + i2yz[ (plr  + kT)2 + m2] ~/2 -+ 
4 i [ ( p l r  + kT ) 2 q- l'n2]l/2[ ( Pl T q- NT ) 2 q- m 2] 

x 2L~ coth [(P~r + kr) 2+ rn2] ~/2 
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( P l - - g ) 2 +  m 2 4 L 2 [ ( p , r _ _ g T ) 2 +  m 2 ] , / 2 [ ( p , r _ g T ) 2  + m 21 

+ i2'yz [ ( P l  T -- gr )  2 + m2] 1/2 --  [ iyr(p~ r - gT) -- m ] 

i[ ( Pl T -- gT ) 2 + m2][ ( pl  T -- gT ) 2 + m2] ~/2 

X 2L2 COth{ [ ( pl  r - g r  )2 + m2]l/2 Lz} } 

2[ iyr  ( p i t  - g r )  - m] - i 2 y ~ [ ( p l r  - gr )2+  m2] 1/2 

4i[(pl  r - g r )  2 + m2][(Pl r - g r )  2 + m 2] 1/2 

X 2 L 2 C O t h { [ ( P l T - - g T ) 2 + m 2 ] I / 2 - ~ }  ) 

e?l)'Yvu1(P1)27r3 03(PlT  q- iT  --P2T --gT)O(rlptz nt- rlkz -- np2z -- ngz) 

= 27r303(P1T + kT - -P2r  -- gr) 'O(np, z + nkz -- rip2 z -- ng~)F (12) 

The terms in the S-matrix containing L~ and hyperbolic functions constitute 
a correction due to the "vacuum"  field between the two plates. The smaller 
the span between the plates, the greater the impact  of  the vacuum field. 

With the plates being pushed apart  the impact  of  the vacuum field 
diminishes and when L~ = oc all the corrective terms within the limit equal 
zero and as a result we obtain the well-known S-matrix for photon-elect ron 
or Compton  scattering. 

4. C O M P U T A T I O N  OF T H E  CROSS S E C T I O N  

Proceeding with the computat ion of  the S-matrix and the scattering 
cross section, a laboratory system (with the electron in the initial state at 
rest) is assumed. 

The cross section is computed as shown in the equation below (Gupta,  
1977): 

1 f IP2ilPo 
- (21r)2[p~i /p~o-  ki /kol  d f~ p(Plo + go)/OP,o ~ IF(p2, g; Pl , k)l 2 

(13) 

~ ~spin ~pol  

Espin denotes the average over the initial spin states and the summation 
over the final spin states of  the electron. It should be pointed out though 
that this is true in instances when the spin states of  the particle during the 
process of  collision are of  no interest. ,~,po~ is of  similar significance for the 
average and the summation for the polarization states of  photon. 
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To simplify the S-matrix, we use the following notations: 

p l i=0 ,  P lo=m 

ki=P2i+q~, p~=p2=-m2, k 2 = q 2 = 0  

(pl+k)Z+m2=2p~k, (p~-q)2+rn2=-2p~q 

(PlT+kT)2+m2=2plTkT, (PaT--qT) 2q-m2= --P1TqT 

For transverse photons, the polarization vector e does not contain the fourth 
component, which makes further simplification possible: 

(iply-m)(elA2)y~)u(pO=O, (ip~y-m)(ela')%)u(p)=O 

Having first simplified the S-matrix (12) by means of the equations quoted 
above, we now compute F 2. We then insert F 2 into equation (13) and 
compute the scattering cross section for polarized light: 

f~(k~[k~176 O'pol ~ lr2o 
J Ego ko J 

pzog g [ 1 1 1 
4kogom [ ~rE16Lzkom4 3 irE16Lzgom4 3 7r8(kogo)(kogo)l/2mL4 

+ ~  coth2[(2mko)l/2Lz]+~-~_ 4 cothZ[ (2mgo)l/2Lz] ( ee') 2 
2Lzko 2Lzgo 

(14) 

In cases when Lz approaches infinity, the computed scattering cross section 
agrees with the Klein-Nishine expression. The corrective terms then all 
equal zero. 

At this point we calculate the scattering cross section for the case when 
ko = qo and ko<< m0. In equation (14) we insert 

27r 2rr 
k o -  a ' q~  -7' a = a '  

A short calculation yields 

Crpol= dO r2o(ee') 2 1 128r ~4 (15) 

In equation (15), A stands for the wavelength of the photon. The condition 
A <- Lz must be taken into account. For the summation of photon polarization 
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states we apply the familiar relation 

r 2 = 1(1 + cos 2 0) (16) 

The scattering cross section of  unpolarized light for the low-energy photon 
is 

o-= ro 2 df~ [ (1- �89  sin 2 0) 1 128~r2 (17) 

From equations (14), (15), and (17) it is evident that the influence of the 
correction terms of  the vacuum field upon the scattering cross section is 
the greater, the smaller the span Lz between the two plates. In instances 
when the photon wavelength is significantly shorter that the span between 
the two plates, the correction term of the vacuum field may be omitted. 

All correction terms of  the vacuum field are proport ional  to Lz. The 
dependence of  the attractive forces upon Lz in uncharged conductive plates 
was worked out by Casimir. Also dependent  upon L~ is the vacuum energy 
density between the two plates. When the Lz span between the plates 
approaches  infinity, all correction terms of the vacuum field as well as the 
vacuum energy equal zero. Equations (14), (15), and (17) for the scattering 
cross sections when the Lz span between the plates approaches infinity are 
equivalent to the values computed so far. The computat ions carried out for 
the S-matrix and the scattering cross section for the reactions between 
elementary particles, e.g., photon-elect ron scattering, posi tron-electron 
annihilation, bremsstrahlung, and the like, do not take the influence of  the 
vacuum field into account. The computat ion of  the S-matrix and the scatter- 
ing cross section for the photon-elect ron scattering briefly presented here 
illustrates the vacuum field influence. The purpose of the theoretical analysis 
of  the reaction is to find out by a concrete example the influence of  the 
vacuum field upon the photon-elect ron scattering. To ascertain the correct- 
ness of  the equations given above, experiments must be carried out. 

In order to verify equations (14), (15), and (17) experimentally, we 
intend to perform measurements  of  the scattering of  light of  various 
wavelengths (0.1-10 k ~ )  on electrons located between two plates with a 
span of  0.1-1 #m.  The span will thus be equal to the one Sparnaay obtained 
in gauging the Casimir effect. 
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